\square

B.TECH

(SEM I) THEORY EXAMINATION 2019-20

ENGINEERING MATHEMATICS-I

Time: 3 Hours
Noter.AttempltSectiohfsequiaramis sidgtatheahooselitably.

SECTIOAN

1. Attemqutquestiontsicf.
a. Find the median of the
$2 \times 7=14$
following
b. Write the normal equations: $y=a x+b x+c$.
c. Define the differentiability of function at $x=x$.
d. Find- for $y=x \sec x$.
e. Find- for $u=x \log (x+y)$.
f. Evaluate $\sin x d x$
g. Define the order and degree of differential equation.

SECTION B

2. Attempt any three of the following:
a. Find the measures
gkewness for the following distribution:

| x | 3 | 5 | 7 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| f | 4 | 6 | 4 | 1 |

b. \quad Find θ^{-}for $y=$.
c. Examine $f(x, y)=x+y-3 a x y$ for maximum and minimum values.
d. Evaluate $\overline{()()} d x$
e. Solve the differential equation $3-+x y=-$.

SECTION C

3. Attempt any one part of the following:
(a) By the method of least squares, find the curve $y=a x+b x$ that best fits the following data:

x	1	2	3	4	5
y	1.8	5.1	8.9	14.1	19.8

Paper Id: 180102

Roll No: \square
(b) Obtain the median for the following frequency distribution:

x	1	2	3	4	5	6	7	8	9
f	8	10	11	16	20	25	15	9	6

4. Attempt any one part of the following:
$7 \times 1=7$
(a) Find - for $y=\log \log \log (\tan x)$.
(b) Show that $\mathrm{f}(\mathrm{x})$ given by

$$
f(x)=\begin{array}{cc}
5 x-4 & \text { if } 0<x \leq 1 \\
4 x-3 x & \text { if } 1<x<2
\end{array} \text { is continuous at } \mathrm{x}=1 .
$$

5. Attempt any one part of the following:
(a) If $u=f(r)$, where $r=x+y$, prove that $-+-=f(r)+f(r)$.
(b) If $\mathrm{u}, \mathrm{v} \mathrm{w}$ are the roots of the equation $(\lambda-x)+(\lambda-y)+(\lambda-z)=0$ in λ, find $\frac{(,,)}{(,,)}$.
6. Attempt any one part of the following:
(a) Evaluate $x \sin x d x$.
(b) Evaluate () $d x$.
7. Attempt any one part of the following:
(a) Solve the differential equation $(D+4) y=\sin 3 x+\cos 2 x$.
(b) $\operatorname{Solve}(D+9) y=\tan x$ differential equation by the method of variation of parameters.
